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Matrix and tensor constructions from a generic SU(n) vector 

K J BARNES? and R DELBOURGOS. 
t Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 
$ Department of Physics, Imperial College, London SW7 282, UK 

MS received 10 February 1972 

Abstract. Projection operators appropriate to the general multispinor representations of 
SU(n) are constructed in a systematic way from the components of a single generic SU(n) 
vector transforming as the adjoint representation. The techniques have been devised with 
the problems of writing explicit forms for finite SU(n) rotations and nonlinear chiral 
Lagrangians kept specifically in mind. In particular, the general second rank tensors con- 
structed from a single vector are found, counted, and exhibited in a very tractable form. 

1. Introduction 

Recently new attempts have been made to understand the nonsymmetric pieces of the 
hadronic Hamiltonian in terms of spontaneous breakdown of the basic chiral 

K(3) = SU(3)@SU(3) 

symmetry (Dashen 1971, Nuyts 1971). These ideas lead, via a minimization procedure, 
to the requirement of constructing explicitly the transformations of low dimensional 
SU(3) representations through a jfinite angle specified by the components of a single 
octet vector. It has long been realized that the elusive solution to the problem of obtain- 
ing explicit closed forms for nonlinear realizations, and hence of forming chiral invariant 
nonlinear Lagrangians, might also follow from the same techniques (Macfarlane et a1 
1970). For this latter problem (Gasiorowicz and Geffen 1969) it has recently been 
emphasized (Barnes 1972) that it is also necessary to construct general second rank 
tensors from the given octet, and that one must be able to form inverses and products 
of such tensors. These two separate developments in the theory of hadronic interactions 
have shown the need for handling the same piece of mathematical machinery, and SU(3) 
treatments of these problems have been given of late (Rosen 1971, Barnes et a1 1972). 
In all versions the construction of matrices which act as projection operators proves 
to be a key concept, and much reliance is placed upon the ideas of charge and special 
vectors introduced by Michel and Radicati (1968) beyond the SU(2) level. 

In this paper we show how to extend these ideas to treat all problems of this general 
type in a systematic and coherent way at the SU(n) level. The notation and basic concepts 
required for our description are introduced in $2. In 8 3 we show how to find the basic 
projectors for any representation when only a single generic vector transforming as the 
adjoint representation is available, and we obtain two convenient base sets of (n- 1) 
orthonormal vectors from the given one. Section 4 contains a solution to the problem 
of constructing second rank tensors from the vectors, and a particularly useful example 
is presented in 9 5 to illustrate the utility of our results. 
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2. Notation 

We adopt the language and notation most familiar to high energy physicists. A detailed 
review may be found in the article by Matthews (1967), and we now list the essential 
results for our purposes. Given the Lie algebra of SU(n), we may take as a basis a set of 
(n2 - 1) traceless hermitian n x n matrices A I  with the product law 

(2.1) i~i~ = ( d r j k  f ?fiJkJik f 2d,~ln 
and where the equations 

(2 .2)  

express the completeness property. Here the indices K ,  L, M ,  . . . range from 1 to 11, while 
the indices i ,  j, k ,  . . . run from 1 to n2 - 1. Repeated indices are summed except where 
indicated in the text. All indices are taken as subscripts and we reserve superscripts to 
indicate powers. Note that i ,  j ,  k.  . . . refer to the group SU(n)/Z(n), where Z(n) is the 
centre of SU(n), rather than SU(n) itself. Moreover, the (n2 - 1) components obtained 
by contracting the indices of the 2 matrices against a double indexed mixed spinor may 
be regarded as Cartesian components of a vector in (n2 - 1) real dimensions, since 
SU(n)/Z(n) is isomorphic to a subgroup of real rotations in (n2 - 1 )  dimensions leaving 
( n  - 1) polynomial forms invariant. 

Clearly, from equation (2.1), the matricies +;.[ represent the generators of SU(n) in the 
fundamental representation andLjk are the structure constants. Furthermore, it follows 
from (2.1) that the real quantitiesLjk and d i j k  are respectively totally antisymmetric and 
symmetric. It will also prove convenient to introduce the alternative set of n2 matrices 

which obey the product law 

F A B F C D  == d B c F a  (2.4) 

and thus generate the Lie algebra of U(n) on commutation. Since commutators are 
unaffected by tracing, the n2-1 traceless matrices in this set generate SU(n), and the 
precise relationships are 

(F.4B)MA’ = FABi(ii)MN (2.5) 

FABi = 3 Tr(FAB,ii). (2.6) 

or 

By the Cayley-Hamilton theorem (Birkhoff and Maclane 1965) every hermitian ii x IZ 
matrix M satisfies its own characteristic equation 

n 

(M-m,)  = 0 
A = 1 

(2.7) 

where the mA are the eigenvalues. This equation may be expanded in the form 
n 

M”+ 1 c ~ M ~ - ~  = 0 (2.8) 

where the cA are real symmetric functions of the eigenvalues and obey inequalities 
(discriminant conditions) due to the reality of the m A .  When the matrix is traceless. 

A = l  
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the coefficient c1 vanishes, and we restrict ourselves to this case henceforth. Such a 
matrix has the expansion 

(2.9) 

giving us the n2 - 1 components mi of a vector transforming as the adjoint representation. 
In the terminology used by Michel and Radicati (1968), the vector is said to be generic 
(or belong to the generic stratum) if all eigenvalues are distinct. For the generic case the 
minimal polynomial for the matrix is the characteristic equation itself, so that the n 
vectors with components 

M A i  = iTr(MAAi) (2.10) 

given in terms of the powers of the matrix are a linearly independent set. Moreover 
with such a matrix, the cA can be taken as (n  - 1) independent invariants and are related 
to the alternative choice (MacMahon 1960) 

n n 

(2.1 1) 

by simple determinants. Observe that mi = mli, and s1 = 0, so that the (n  - 1) objects 
are easy to identify in each case. 

It is perhaps worth emphasizing at this point that if one chooses to start some 
calculation by specifying the components mi then in order to apply the results which 
are presented in this paper it is necessary to find the eigenvalues as a first step. In 
general this involves solving an algebraic characteristic equation of degree n, and we 
therefore recommend an alternative starting point which involves specification of the 
eigenvalues. Of course, for the cases of SU(2) and SU(3) so much literature already 
exists that our advice is not appropriate. Fortunately the required connecting relation- 
ships between the two descriptions are not too hard to find for these cases, and have 
already been stated in closed form (Barnes 1972, Barnes et a1 1972). 

3. The basic projection operators 

The crucial step, which is a common feature of this and all previous approaches (Rosen 
1971, Barnes et a1 1972), is the resolution of the powers of the matrix M in the form 

M A  = (mJAPB mABPB (3.1) 

PAPS = 6Ad'B (no sum) (3.2) 

Tr(PA) = 1 (3.3) 

where the PB are n hermitian matrices, each n x n, with the properties 

and 

f: P A = l  
A = l  

(3.4) 

where 1 is the unit n x n matrix. It is, of course, the fact that the PA are projectors that 
makes all subsequent calculations tractable. Notice that the inverse of equation (3.1) 
may be written in the form 

PA = m,,'MB. (3.5) 
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This particular formula is especially useful in making contact between the present fairly 
formal manipulations and the explicit forms occurring in practice when 11 assumes low 
values. It should be stressed that the procedure does not, of course. diagonalize the 
matrices. 

Now that we have the n projectors of the fundamental representation it is a simple 
matter to construct the projectors of higher representations by forming the direct 
symmetrized products of the fundamental ones appropriate to the corresponding multi- 
spinor representations. For example, let us consider the projection operators which act 
on the components of the n(n + l ) ( n  + 2)/6 dimensional irreducible multispinor having 
three symmetric indices (the decuplet at the SU(3) level). We define 

p(ABc) = d p.AOpBOpr (3.6) 

where the summation is over all permutations of ABC to ensure symmetry and the 
factor is for purposes of normalization. In (3.6) we have omitted the multispinor 
indices on which these projectors operate for clarity. From equations (3.2) and (3.3) we 
get at once 

(3.71 

and 

where the sets ( A X )  and ( D E F )  in equation (3.7) act as single indices in the final expres- 
sion. It should be clear from our earlier remarks, and from this example, how to build 
up projectors for all representations of SU(n). 

As mentioned before it is often convenient to work directly with vector and tensor 
representations of SU(n):Z(n) rather than with multispinors. With this in mind. we 
consider the equations 

(3.10) 

which define the components of the PA in the Cartesian basis. Substituting (3.10) into 
(3.2) and (3.4) we find 

and 
n 

1 PAi = 0 
.4 = 1 

(3.14) 

as the basic properties of the vector projectors. Notice that although these vectors lie 
in a charge stratum (ie the minimal polynomial of their matrices is of degree two) they 
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are not the charge vectors defined by Michel and Radicati (1968). To arrive at the 
connection with the work of these authors, we observe that 

( p A i - p B i ) ( p A i - p B i )  = (no sum on A and B)  (3.15) 

d i j k ( p A  j - p B j )  ( P A k  - PBk) = pAi + pBi (3.16) 

( P A i + P B J ( P A i + P B i )  = 1 -2/n (3.17) 

(3.18) 

so that the differences of the PAi are the special vectors of Michel and Radicati and the 
sums of the PAi are their associated charge vectors up to a normalizing factor. These 
distinctions are of no consequence until n 2 4 and, in particular, for the important 
case of n = 3, we see that the PAi and the charge vectors are identical apart from a trivial 
numerical factor. For larger values of n the charge vectors do not directly (ie separately) 
define irreducible subspaces, nor do they have the same little group as the P A i .  However, 
the charge vectors and the PAi are always linearly related as exhibited above, so that 
from an algebraic viewpoint they are equally useful. 

From equations (3.12) and (3.14) it is clear that we are dealing with a set of n linearly 
dependent vectors treated in a symmetrical manner. However, for many purposes it 
is more convenient to use (n  - 1) orthonormal vectors as a base set. We now introduce 
two such sets, each of which has its own particular advantages. One set is defined by 

(no sum on A and B)  

(no sum on A and B) 

(no sum on A and B) 
d i j k ( p a j  + p B j ) ( p A k  + PBk) = (pAi  + p B i ) ( l  -4/n) 

pai = 2 l ’ ’ { ~ ~ ~ - ( 1  +n”2)- ’P , , i }  
and the other set by 

(3.19) 

(3.20) 

where for the p A i  or p k i  the label A ranges from 1 to n - 1. The first set were found by 
inspection, and the second set follow from the Schmidt orthogonalization procedure 
(Courant and Hilbert 1963). It is precisely the latter means of construction which make 
the p a i  especially useful ; thus successive vectors are made orthogonal to previous ones 
without reference to subsequent ones, and therefore the first r < n can be taken at once 
as a basis for the corresponding problem at the SU(r+ 1) level. In particular, the 
matrices 

( P ~ ) M N  = P k i ( 4 ) M N  (3.21) 

are traceless, and in the diagonal basis where 

( P A ) M N  = J A M J A N  (no sum on A )  (3.22) 

are the familiar canonical choice in much of the literature (Matthews 1967). Inspection 
of equation (3.19) instead, shows an explicit dependence upon n, so that the pai have 
no equivalent property. Nevertheless the p A i  have the advantage of being more simply 
related to the P A j ,  and this allows for a particularly neat treatment of nonlinear chiral 
Lagrangians (Barnes et a1 1971) where use of the PAi is crucial. 

The basic machinery appropriate to any multispinor or tensor representation has 
now been set up, and we have discovered two convenient bases for the vectors of the 
adjoint representation. The remaining problem of immediate physical interest is to 
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count the number of independent second rank tensors we can construct from a single 
generic vector, and to build the general tensor of this type in a manner which makes all 
subsequent manipulations (inversion, square rooting, etc) possible and trivial. This is 
the subject of the next section. 

4. The second rank tensors 

When specifying the nonlinear realizations of chiral algebras (Coleman et id 1969. 
Isham 1969) and subsequently constructing hadronic Lagrangians (Callan et ul 1969). 
the second rank tensors play a vital role (Weinberg 1968). This has been discussed 
extensively in the literature (Macfarlane et  nl 1970, Barnes 1972), and we content our- 
selves here with a statement of what is required. We need to build general second rank 
tensors from a generic hermitian vector of SU(n)/Z(n) and be able to form inverses and 
simple products of such tensors viewed as ( n 2  - 1) x (U’ - 1) matrices. This last require- 
ment strongly suggests that we include in the base set of such tensors the (n’ - 1 )  which 
behave as projectors. 

As a first step let us consider the n(n - 1 )  + 1 matrices each (n’ - 1) x ( n 2  -- 1). defined 
by 

( p ~ ~ ) i j  E P,,inj 5 i Tr(P,d;.iPB;.j) A # B  14.1 1 

lij = 9 Tr(P,.g;.iP,4;.jJ (4.21 
and 

where the PA are the basic projection operators defined by our generic vector. In order 
to exhibit the properties of these matrices we apply the two identities 

(4.31 

(4.4) 

which follow immediately from the completeness relation (2.2). A’ and Yare arbitrary 
n x n matrices. One learns that 

11 = I (4.5) 

i Tr(iiX) Tr(Li Y )  = Tr(X Y)  - Tr X Tr Y !I? 

f Tr(,iiA’;.iY) = Tr X Tr Y-Tr(X Y ) ; n  
and 

(4.6) 

(4.7) 

where matrix indices are omitted and a matrix product is implied on the left hand side 
of the equations. Henceforce we will omit such indices without comment whenever a 
gain in clarity can be achieved without causing confusion or ambiguity. From equation 
(4.2) we obtain further 

Tr I = 1 2 -  1 (4.8) 

Tr P,-LB = 1. (4.9) 

Also we can derive the completeness relation 

1 P*,+l = 1 
. I  t n  

(4.10) 



Constructions from a generic SU(n) vector 1049 

where 1 denotes the unit matrix with components 6,,, by using the product rule (2.1) 
and equation (3.4). Thus the matrices (4.1) and (4.2) have the properties of projectors, 
and I can be reduced further into a sum of (n-  1) matrices which act as projection 
operators, as we shall see. 

Now we are in a position to construct the most general second rank tensor from our 
generic vector. We start by resolving the vector into components 

mi = 3 Tr(AiM) = i m ,  Tr(AiPA) (4.1 1) 

and similarly all powers of M as in equation (3.1). The problem then reduces to con- 
structing the most general second rank tensor Tj from the invariants mA and the 
matrices PA, where the free tensor labels are carried by the I. matrices. Evidently Tj  
may be written as a sum (with coefficients as functions of the mA) over all second rank 
tensors constructed similarly from the PA and i matrices alone. These last tensors all 
take the form of sums of products of traces over the n x n matrices taken as products 
of PA and A matrices. As an aid to visualization consider the typical example 

Tr(i.iPAPBi,AkPDi,) Tr(AjPEIWkPc) (4.12) 

where the only free tensor indices are i and j, all others being summed. The projector 
labels A,  B, C, D, E are also free. The completeness properties (4.3) and (4.4) make it 
possible to simplify expressions like (4.12) by rewriting them as sums of similar ones 
involving no 3, matrices other than Ai and l j ;  thus the repeated index k may be removed 
by using (4.3), while the sum over 1 is eliminated by using (4.4); next we may reduce 
any two contiguous PA by their basic projection property (3.2). 

Only two basic types of tensor survive this analysis 

Tr(iiPA) Tr(Ib,PB) = PA~PB, (4.13) 

and 

Tr(PAiiPBAj). (4.14) 

Once again the completeness property of the i matrices plays a crucial role, for we learn 
the multiplication rules 

IijPAj = PAi = PAjZji 

and 

(4.15) 

P B i C j P A j  = 0 = P A j P B j C i .  (4.16) 

Therefore the PAiPBj lie in the subspace of (n2 - 1) x (n2 - 1) matrices projected out on 
multiplication by I from both left and right. Also, because the trace of I was found to 
be (n - l), the (n - 1)’ independent matrices with components 

(PAB)i j  E PAiPBj  (4.17) 

span this subspace. Moreover, since the vectors pAi are orthonormal, the multiplication 
law for such matrices is 

PABPCD = ~ B c P A ~  (4.18) 

and comparison with equation (2.4) reveals that we are now dealing with the familiar 
rule which defines the matrices generating U ( n  - 1). (We emphasize, however, that the 
pAB are (n2 - 1) x (n2 - 1) matrices.) In particular, the remaining (n - 1) matrices which 
act as projectors into which I may be decomposed are to be found among this set, and 
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to specify them would require both a generic SU(n- 1) vector and the techniques we 
have developed here. 

We thus have a basis for all tensors in equation (4.13) so let us turn our attention to 
the remaining ones (4.14). Unless B = A ,  the tensor in (4.14) is identically the projector 
qdiBj of (4.1), so it only remains to examine the tensors 

(1,Jij = 5 Tr(PAiiPAij) (no sum). (4.19) 

But on applying (4.3) yet again we see that 

11, = l.,I (4.20) 

PABI, = 0 = IcP..,B. 

and 

(4.21) 

Hence I ,  can be expressed in terms of the p d B .  In fact, since the I C  involve just Pc.  we 
deduce that 

( 1 . 4 ) i j  = 2',4ip,ij (no sum) (4.22) 

a conclusion which is obvious in a basis which diagonalizes the P.4. 

in the form 
The analysis is now complete. A general second rank tensor (matrix) may be expanded 

(4.23) 

where PAB and pas are the (n  - 1)(2n- 1) independent tensors defined in (4.1) and (4.17). 
The expansion coefficients TAB and t,.4B depend solely on the invariants m,,< of the generic 
vector. Furthermore, the basic tensors PAB and p,4B have such simple product rules that 
subsequent manipulations of T j  become quite tractable if not trivial. 

At this point, it is worth remarking that one could extend these methods for counting 
and constructing higher rank Cartesian tensors. For instance, a third rank tensor Kjk 
may be expanded at most in terms of the set 

Tj = TAB(p.4B)ij f 'AB(P.4B~ij  

(4.24) 

(4.25) 

P A k  Tr(p.4iiPBi+,) B f A  (4.26) 

P.4 i P B j P C k  and perms (4.27) 

a total of (n  - 1)(6n2 - 9n + 1) tensors which are expected to be linearly independent. 

5. An example and conclusions 

We have shown how to write projection operators, defined in terms of a single generic 
SU(n) vector (specified by its eigenvalues), appropriate to arbitrary rank multispinor 
representations. Also, we have shown how to work directly in the SU(n)/Z(n) frame- 
work and have constructed the most general second rank tensor. As an illustrative 
example to show the usefulness and power of our methods, we shall conclude this paper 
by deriving two simple expressions that are of importance in both types of calculation 
mentioned in the introduction. We shall exhibit how these expressions lead simply to 
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a well known result, thus giving a check on our techniques. From the generic expansion 
(4.1 1) we may write 

iJkjmk = amA Tr(AjLiPA - LiLjPA) (5.1) 

using the multiplication rule (2.1). Inserting the unit operator as in equation (3.4) 
between contiguous matrices, we obtain 

A B  

as our first expression. Next, consider the unitary transformations of a basic spinor NA 
specified by 

NA -+ UABNB 
with 

(5.3) 

U = exp(+iOjAj) = PA exp(ii8,) (5.4) 

where the last step is the equivalent of equation (4.1 1) and where the real components 
of the angles 8 must satisfy the condition of unimodularity 

1 6 ,  = 0. 
A 

(5 .5 )  

It is easy to prove that the transformation induces a corresponding orthogonal one 
(Macfarlane et a1 1970) 

vi -+ R..v. I J  J (5.6) 

where v i  are the components of any vector in the adjoint representation and 

In our present notation this last expression may be immediately written in the required 
form 

R = I + c PAB exp{$(OB- e,)) 
A B  

which can be compared and contrasted with the results obtained at the SU(3) level 
(Barnes 1972, Rosen 1971). Of course, if we define 

(Ff3)ij = iLfikjOk (5.9) 
then the familiar result 

R = exp(iF,) (5.10) 

follows at once from (5.5) and provides a useful check on our work. 
As mentioned in the introduction, the immediate applications of these techniques 

in high energy physics are to the construction of chiral Lagrangians (Gasiorowicz and 
Geffen 1969, Callan et a1 1969) and to the minimization problems of the Dashen type 
(Dashen 1971). 

The results embodied in (5.2), (5.4) and (5.8) provide a framework for studying 
problems of the latter kind. Dashen showed that the application of a generalized 
minimum energy principle to the vacuum expectation value of the Hamiltonian in 
chiral theories placed restrictions on the ranges of the parameters specifying the sym- 
metry breaking. Without such restrictions completely unphysical results (such as 
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negative values for squares of masses) are predicted. To find the allowed class of 
Hamiltonians it is necessary to write explicit closed forms specifying rotations of simple 
representations of the chiral algebra. The expressions we have indicated above certainly 
give such forms for the most important cases, and in particular for the (3,3*)+(3*. 3 )  
and ( 1 1  8)+(8, 1) representations of K(3), and have the added advantage that they are 
easy to manipulate. Moreover, the expressions for the finite rotations show a smooth 
transition from the generic case to rotations specified by vectors on more singular strata. 
This latter point may well be of importance, for Michel and Radicati (1968) give strong 
reasons for expecting physically significant minima on nongeneric strata. A particular 
scheme of this type is presently under consideration, and we hope to present the main 
physical consequences at length in the near future. 

If 0 is generalized (Barnes et ul 1971) to become a function of the invariants 1 1 1 , .  

then (5.4) gives an elegant solution to the problem of constructing nonlinear chiral 
invariant Lagrangians. The basic requirement has long been known (Coleman et ill 

1969) to be the construction of the most general ( n  x 11)  unitary unimodular matrix from 
a single hermitian adjoint vector, and (5.4) is then precisely what is needed. Once this 
is available, the general theory may be applied more or less directly to construct the 
Lagrangians, and the material we presented in $ 4  is the appropriate machinery for 
handling the expressions which arise. In particular, the covariant derivatives (of fields 
other than the Mi) which play a crucial role in this theory can be expressed directly i n  
terms of a rational form in K and the unit matrix. This is treated at length in Barnes ct ui 
(1971) to which we refer the reader for further details. In point of fact, the construction 
(Sarkar 1971. pp 95-140) of the chiral K(3) nonlinear Lagrangians preceded, and led 
directly to, the present work. However. the present ideas have made possible a far more 
coherent presentation of those results (Barnes et ril 1971), and allow for the extension to 
the cases of K(4) and K(6) suggested by spin symmetries (Matthews 1967, Delbourgo 
1968. Delbourgo et al 1969). 
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